
 

 

 

INTRODUCTION 

 

Natural and anthropogenic factors are the main events to cope 

with the biotic and abiotic challenges (Minakshi et al., 2011). 

Natural disasters, including extreme rainfall events, floods, 

cold waves, heat waves, and cyclones, are severe threats to 

economic losses. The alterations in climate patterns can 

influence the spread of pathogens and it can also affect the 

plant's response to biotic stresses (Nicol, 2011; Russell et al., 

2004). The enhancement in pathogen infestation is a major 

constraint in crop production (Minakshi et al., 2011). The 

effects of stress may vary depending on time, nature severity, 

and prevailing environmental conditions (Gupta et al., 2016; 

Sharma and Dubey, 2005). Stress factors hijack the plant 

system in a combination or interactive way (Niinemets, 

2010). In interactive mode, the initial stress factor alters the 

plant behavior for the attack of another stress (Mittler, 2002). 

The damages caused by stress are more severe when more 

than one-factor attacks synergism. Plants respond to the 

environment in specific and non-specific ways (Newton et al., 

2011). There are many common threats and damages in 

signaling pathways of specific and general responses to 

stresses (Miller et al., 2010). The plant faces a wide array of 

biotic and abiotic challenges, e.g., insects, herbivores, fungal, 

bacterial, and viral attacks by specific, general, or overlapping 
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defense mechanisms. Biotic agents interfere with the plant-

water relationship to increase the pathogenesis. Plants 

remodel their anatomy, morphology, physiologies, 

biomolecules and gene expressions due to environmental 

stress conditions (Wang et al., 2001; Shao et al., 2009). Biotic 

stresses also stimulate the plant protoplast, chloroplast and 

peroxisomes to raise the reactive oxygen species (ROS) level 

(Bolwell, 1999). The changes in ubiquitous/proteome (UPS) 

help the plant to survive under harsh biotic and abiotic 

conditions, e.g., Arabidopsis, cereals and French beans. Both 

factors impose severe pressure on our global agents. The 

central theme behind this title is to find the targets of crop 

plants and how they tolerate environmental stress. 

Ways of defense mechanism: Avirulence factor (Avr) and 

plant defense protein (R-resistance) become susceptible if 

they lack cognate R gene in response to particular Avr. The 

plant produces SAR (Systematic Acquired Resistance) when 

a pathogen attack (Durrant and Dong, 2004). Plants fend off 

future attacks from fungi and bacteria when customized by 

colonizing non-pathogenic bacteria (Durrant and Dong, 

2004). There are the following types of defense mechanisms: 

1. Basal Defense: In this, the plant recognizes and responds 

to a wide range of non-host pathogens by PAMPs 

(pathogen-associated molecular Patterns). 

2. Gene-for-Gene 
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3. R-mediated Resistance 

types of defense mechanism biochemical defense 

mechanism: Biotic and abiotic agents are coordinated via 

cross-talk and signaling pathways (Fig.1). The critical 

components of this cross-talk are transcription factor, HSF 

(Heat shock factor), ROS, and mitogen-activated protein 

kinase (MAPK) to minimize the damages by conserving 

valuable resources (Nicky and Peter, 2012; Rizhsky et al., 

2004). When the NADPH level falls, the uptake of oxygen 

increases in plants (Bolwell, 1996). The DPI 

(Diphenyleneiodonium Chloride) is the inhibitor of NADPH-

oxidase, which facilitates the alleviation of the effects of ROS 

(Bolwell et al., 1998). ROS are produced in response to both 

biotic and abiotic stresses (Anjum et al., 2011). The crop 

plants either mutated transgenically (transcription factor-TF) 

or conventional breeding (Maize) and embryogenesis 

abundant (EA) in potatoes, bananas, and rice are the best 

defenders against stresses (Newton et al., 2011; Anderson et 

al., 2004). 

    

 
Figure 1. Combine TF and Phytohormones to deal with 

biotic and abiotic stresses. 

Phytohormonal/Regulator Roles in Defense Mechanism: 

Endogenous phytohormones are LMW molecules that 

regulate the protective mechanism in plants in a synergistic or 

antagonistic manner (Figure 2) (Abe et al., 2012). The ABA, 

Ethylene, Gibberelline and Auxin facilitate the plant in 

alteration of UPS, transcriptional and post-transcriptional 

changes in response pathway (Kate and Judy, 2007). The 

ABA produced in response to biotic and abiotic factors 

strongly interacts with the ET in an intricate defense 

mechanism (Jonathan et al., 2004). ABA causes drought 

stress. It is exaggerated by climatic, edaphic and agronomic 

factors. The unavailability of water induces the change in 

stomatal aperture due to ion transport, growth, yield, 

membrane integrity, pigment content, osmotic adjustment 

water relations, photosynthetic activity and reduction in 

turgor pressure (Figure 3) (Roelfsema, 2004; Praba et al., 

2009). It weakened germination and poor stand establishment 

(Harris et al., 2002). The plants become more susceptible to 

disease pathogens when drought occurs in Sorghum, Beans 

and Date palms (Suleman et al., 2001). Drought and heat 

stress cause the opening of chromatin conformation). 

Jasmonic acid and ethylene act synergistically and 

antagonistically during the biotic stresses. The ethylene is 

produced primarily in biotic and abiotic stresses (Van et al., 

2015). UPS programs are important against pathogens and 

favor the plant defense systems because several pathogens 

hijack the UPS components (Zheng et al., 2006). This 

component plays an essential role in many plant processes 

(Imaizumi et al., 2005; Van et al., 2015). It helps in 

identification by different bioinformatics tools (Moon et al., 

2004). 

 

 
Figure 2. Drought, Heat and ABA defense mechanism 

 

Bioagents Role in plant protection against stress: 

Microorganisms are the primary strategy to cope with 

abiotic and biotic stresses. They play a crucial role in plant 

growth promotion, nutrient management and disease control 

by colonizing the rhizosphere/endo-rhizosphere of plants 

(Saxena et al., 2005). PGPR including Rhizobium, 

Bradyrhizobium, Azotobacter, Azospirillum, Pseudomonas 
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and Bacillus, Pantoea, Paenibacillus, Burkholderia, 

Achromobacter, Microbacterium, Methylobacterium, 

variovorax, Enterobacter Upadhyay et al., (2009) have been 

reviewed recently to tolerate abiotic stresses. 

 

 
Figure 3. Crosstalk between UPS and Hormones to 

activate the Plant Defense System. 

 

The viral infection protects the plants from drought in 

tobacco, beet, and rice. Drought, heat and salinity cause 

severe threats to 50% of arable land. Rhizobacterial-treated 

plants resist the attack of drought and bacteria (Timmusk and 

Wagner, 1999). Nematode ameliorates drought stress (Smith 

et al., 2007). Different types of signaling have been discussed 

in the latest supporting literature to confront the 

environmental challenges (Table 1 and Figure 4). Stress-

targeted or exposed areas of the plants are dwelling sites of 

rhizobacteria (Lifshitz et al., 1986). 

1. Thermomicrophiles and halomicrophiles can optimize 

metabolic activities (enzymatic activities, membrane 

stability) (Madigen, 1999). 

2. Cytoplasmic osmolarity is modulated by the 

rhizobacteria for the production of osmoprotectants 

(Blanco, 1994). 

3. Oligosaccharides of these bio-agents sustain the turgor 

pressure (Sandhya et al., 2009a, b). 

4. Exopolysaccharides can hold water holding and nutrients 

cementing. 

5. Keeps the Pseudomonas hydric stress (Roberson and 

Firestone, 1992). 

6. Pseudomonas aeruginosa strain AMK-P6 formulate the 

chaperons (heat shock (HSPs/thermoprotective proteins) 

and few bacteria (Serratia marscescens strain SRM and 

Pantoea dispersa) release cryoprotective protein (cold 

shock proteins-CSP) (Koda et al., 2001; Castiglioni et al., 

2008), which prevent the denaturation of proteins and 

proteases during extreme temperature (Ali et al., 2009). 

7. Root length and number of tips increased by indole acetic 

acid, gibberellins and some PGPR in drought stress 

(Egamberdieva and Kucharova, 2009), Paenibacillus 

polymyxa in Azospirillum thaliana (Timmusk and 

Wagner, 1999) and A. brasilense Sp245 in Triticum 

aestivum. 

8. Salinity tolerance in tomato, pepper, canola, bean and 

lettuce by the cooperation of PGPB (Barassi et al., 2006). 

9. Production of trehalose metabolism in rhizobia enhances 

the abiotic stress signaling pathway of leguminous plants 

(Suarez et al., 2008). 

10. Plant physiology and the expression of plant genes 

become improved by arbuscular mycorrhizal (AM) 

during water deficiency and drought stress (Ruiz-Lozano 

and Azcon, 2000). 

11. Drought and heat stress in alpine and arid grassland 

habitats increase by the endophytic symbionts of dark 

septate fungi (DSF) (Porras-Alfaro et al., 2008). 

12. Brassinosteroids cause pleiotropic effects on plant 

development (Bishop, 2002). 

Plant Modifications to Confront the Varietal Stresses: 

1. Stomata open in heat stress and closed in cold and water 

stress (Beattie, 2011). The closed stomata also prevent 

microbial invasion (Melotto et al., 2006) by induction of 

ABA (Rizhsky et al., 2004). 

2. Callose deposition starts on the cell wall during fungal 

attack. 

3. Transcription factors and effectors proteins (Dubos et al., 

2010) increased to overcome the damages caused by 

heat, salt and heavy metals (Miller et al., 2010). 

4. Production of proline to tolerate heat, salt and osmotic 

stress. Proline and soluble sugar levels elevate during 

cold stress (Gilmour et al., 2000). 

5. Production of secondary metabolites (Osmoprotectants, 

antioxidants, anthocyanin) to mound the array of stresses 

(Atkinson et al., 2011). 

6. Antioxidants scavenge ROS. 

7. Regulation of phytohormonal signal to overcome or 

interaction (Asselbergs et al., 2007). 

8. The plant attracts AMF by secreting strigolactones in its 

microenvironment, which produces antioxidants 

(Catalase, superoxide dismutase, Ascorbate peroxidase, 

glutathione reductase, carotenoids, alpha-tocopherol, 

proline oxidase, r-glutanyl kinase) osmolytes (Jitender, 

2011). 

9. Genetical changes help in stress tolerance among crop 

plants (Swindell, 2006). 

10. Heat Shock protein (HSP)-a chaperon, protects the plants 

from oxidative stress (Rizhsky et al., 2004). 

11. Anti-stress plants produce small non-coding RNA to 

overcome cold stress (Sunkar et al., 2007). 
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12. SiRNA regulates both bio and abiotic stresses (Ruiz, 

2009). 

13. NT26 keeps away pathogens during the cold period of the 

year (Zhang et al., 2009). 

14. Transgenes are successful candidates in plants during 

tolerance (Wei et al., 2011). 

15. SnRK1 is an array sensor that maintains photosynthesis 

and yields plants (Bartels and Sunkar, 2005). 

16. Hydrated amorphous silica in the epidermis of various 

tissues facilitates the plant to tolerate biotic and abiotic 

stress (Jian, 2004). 

17. Production of stress protein and compatible solutes 

(Bohnert and Shen, 2000), HSP, late embryogenesis 

abundant (LEA) protein (Mathur et al., 2008), and 

osmoprotectants. 

18. Three types of compatible solutes improved stress 

tolerance. 

19. For nutrient balance, plants uptake proton as a coupling 

ion in an ion transport system (Lorenzo et al., 2004). 

20. The chemical composition of lignin is changed during the 

stress. 

21. Jasmonate is a defense during the reproductive stages of 

plants to promote resistance against insects and 

pathogens (Creelman and Johne, 1995). 

22. Fungal chitin and bacterial flagellin show callose 

deposition and oxidative burst (Flexas et al., 2004) 

through pathogenesis in many plants (Kim et al., 2006). 

23. Plants produce specific proteins in hypersensitive 

response (HR) to encounter pathogenicity. 

Table 1. Different types of mechanism signaling to ameliorate the stresses via bioagents. 
Bio-Agent Crop Targeted Stress Mechanism References 

Bacillus subtilis A. thaliana Drought Proline accumulation Chen et al., (2007) 

Rhizobium and Pseudomonas  Zea mays salinity Proline accumulation Bano and Fatima, 

(2009) 

Rhizobium tropici, P. 

polymyxa 

Phaseolus 

vulgaris L. 

Drought Overexpressing trehalose-6-phosphate 

synthase gene 

Figueiredo et al., 

(2008) 

Pseudomonas chlororaphis Arabidopsis 

thaliana 

Drought Volatile metabolite, 2R, 3R-butanediol, 

salicylic acid (SA), ethylene and jasmonic 

acid-signalling pathways 

Cho et al., (2008) 

Burkholderia phytofirmans 

PsJN 

Grapevine 

tissue 

Cold/ chilling stress Epiphytic and endophytic colonization of 

grapevine tissue and organs 

Compant et al., (2005) 

Glomus versiforme  Citrus Drought Osmotic adjustment of the plant under 

drought stress through enhanced levels of 

non-structural carbohydrates, K, Ca and 

Mg. 

Wu and Xia, (2006) 

Glomus intraradices and 

Glomus sp. strain  

Lavender Water Deficiency Overproduction of glutathione and 

ascorbate 

Marulanda et al., 

(2007) 

Gigaspora margarita . Sorghum Drought on salt 

Stressed Soil (Dual) 

Promoted stomatal conductance Minakshi et al., 

(2011) 

Glomus spp. Maize/ mung 

bean/ clover  

Salt Stress proline accumulation Ben Khaled et al., 

(2003) 

Glomus intraradices Pterocarpus 

officinalis 

Flood Stress Limited the overproduction of 

acetaldehyde (causing agent of flood 

injury) 

Fougnies et al., (2007) 

AM fungi and 

Bradyrhizobium 

Casuarina 

equisetifolia 

Flood Development of adv. roots, aerenchyma 

and hypertrophied lenticels 

Rutto et al., (2002)  

Pseudomonas putida, 

Enterobacter cloacae, P. 

putida 

Tomato Flood Synthesis of ACC-deaminase Grichko and Glick 

(2001) 

PGPR Chickpea Metal toxicity Sequestration of metal ions Gupta et al., (2004) 

Scytonema Rice Coastal Salinity Gibberellic acid and extracellular 

products 

Rodriguez et al., 

(2006) 

Piriformaspora indica (DSF) Arabidopsis 

thaliana, P. 

indica 

Diverse Set of Stress upregulation of the message levels for 

phospholipase Ddelta, calcineurin B-like 

proteins (CBL 1) and histone 

acetyltransferase (HAT)  

Sheramati et al., 

(2008) 

Paraphaeosphaeria 

quadriseptata 

Arabidopsis 

thaliana 

Heat Stress induction of HSP101 and HSP70 McLellan et al., 

(2007) 

Endophytic fungi Cuvularia 

spp. 

Dichanthelium 

lanuginosum 

Heat Stress Curvularia thermotolerance virus 

(CatahTV). 

Redman et al., (2002) 
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24. Heavy metals, nitric acid and Ca signaling play a vital 

role in plant immunity response. 

 
Figure 4. Biotic and abiotic stresses and prevention action 

 

Conclusion and Future Perspectives: Experimental 

conditions to check the tolerance in plants must be 

homogenous to natural conditions. It is possible to induce a 

broad spectrum of changes in crop plants. A significant body 

of research suggests that there is still a need to determine the 

mastermind that can play the cross-talk between abiotic and 

biotic stress. Taking the available current leads, future 

research is still needed in this area, particularly on field 

evaluation and application of potential organisms. 
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